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Spectral representation of two-point Green superfunction 

S Balaska, M Guerdane and M Lagraa 
laboratoire de Physique Thenrique, Univenite D’Oran EcSenia, 31 100, Algeria 

Received 22 December 1993 

Abstract. A supersymmetric version of the Kallen-Lehman procedure is presented for inter- 
acting superfields. On the basis of properties of the Fock superspace, the supersymmetric 
invariance and the asymptotic hypothesis, we show that the exact two-point Green super- 
function (WGF) can be written as a superposition of the corresponding f m  TPGF with one 
spectral weight. When the supercurrent is conserved, the spectral weight of vector superfield 
TPGF is positive and affects only the transverse part of the vector superfield while its longitu- 
dinal one remains concentrated at the spurious mass p’. We show also that in the case of 
SQED, where in spite of derivature feature of the interacting Lagrangian, the sum rules of 
the vector superfield spectral weight are like that of conventional QED. 

1. Introduction 

It is well known that the Kallen-Lehman procedure [ l ,  21 gives a spectral representation 
of the exact two-point Green function. Let us recall that this procedure, based on 
relativistic invariance arguments and asymptotic hypothesis, allows us to write the exact 
TPCF as a superposition of the corresponding free TPGF with some spectral weights. 
In the case of a non-derivative interacting Lagrangian, these weights satisfy sum 
rules [3]. 

The purpose of this work is to extend this procedure to the superfields theories 
to construct spectral representations of exact TPGF of interacting chiral and vector 
superfields. 

This paper is organized as follows: in section 2, we present Dirac’s procedure to 
treat the SQED Lagrangian in terms of chiral and vector superfield components. In 
section 3, we construct the Fock superspace of particle superstates and present its 
completeness relation, which exhibits an indefinite metric feature originated from the 
spurious part of the vector superstates. In section 4, a supersymmetric version of the 
Kallen-Lehman procedure is applied to vacuum expectation values of the commutators 
and propagators of interacting chiral and vector superfields. As in conventional field 
theories, the Kallen-Lehman procedure gives, in superfields theories, a spectral 
representation of exact TPGF as a superposition of free TPCF with one spectral 
weight. In spite of the derivative feature of the interacting Lagrangian of SQED, the 
quantum version of Dirac’s brackets gives the same sum rules form of vector super- 
field spectral weight as in QED. Throughout this paper we use the convention used by 
Guerdane [4]. 
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2. Dirac's formalism of sQEn 

The Lagrangian density describing the interaction of a massive vector superfield 
V(x, 0,0)  with two chiral scalar superfields @+(x, 0,B) and @-(x, B ,  0) reads [3]: 

L= Lv+ L"Dv+ (2.1) 

where 

(2.2a) 

is the free massive gauge fixing Lagrangian density of V(x,  0, g) with a mass m (Wess 
1983), and D and d are the supersymmetric covariant derivatives. 

&v=Q!e2ev@t+d eCBVQ- (2.26) 

1 
8 16 

L ~ = - V D P D V + ~ V ~ - ~  V ( D Z D ~ + P D ~ ) V  

is the interacting term of SQED, and 

is the mass term of the scalar superlields @+ and @-, 
The vector superlield equation of motion reads 

1 -  
- DD2DV+ m' V- ( D ' p  + a D 2 )  V= J (2.3) 8 16 

where the supercurrent 

J = ~ ( Q ! ,  eh'@+ - UJL e-%'@-) (2.4) 

is conserved, i.e. D 2 J = b z J = 0  when the chiral superfields satisfy the equations of 
motion : 

(2.5a) 

fBz(e-*"@1) = m+@+ (2.56) 

Z D  I 2 (e 2ev @+)=m+@Dt D2(e-'CV @-)=m+@+ t 

I -2 ICY t - I D  (e @+)-in+@- 

In terms of components, the different parts of (2.1) can be written as 

Lv= Lki. + L, + L, 

L ~ ~ =  2~ + i a , , ~ X -  ~v""u,, 

Lm=m2[-i  V2-xn-zX+ iM+M+ia.xunZ t k O C + C D ]  

with the kinetic term 

(2.6a) I 2  

the mass term 

(2.6b) 

and the gauge fixing term 



Specfral represenlalion of 2-point Green mperfuncfion 5223 

where M, D. C, U,, I and ,y are, respectively, the scalars, vector and Weyl spinor field 
composing the vector superfield V(x, 0, g), u'""=i3'u'"-a'"u" and E is the gauge fixing 
parameter. 

I 

+ee2'CFLA+(e~2+iM)+h.c. 
+e  e zpc (U n -e~aTy)[Q+6~v++ i(A!a.A+-a,A~A+)] 

+eZ[ijZM-i,yZM'+2- ,x ZX 0.1 + e3x222) 

+ (e-+-e and +-+- for the d e-&'@- terms) (2.7) 

where the fields A,, F, and w, are the components of the matter superfields @*, and 

L,.s=m+[A+F-+A-F+- *+*-+ h.c.1 (2.8) 

In terms of components, the Lagrangian density (2.1) presents terms with high- 
order derivative which require additional independent fields 

$1 =C=(Cn = c, x, =?, 2,=2) (2.9) 

and their first and second-order conjugate momenta defined by [4] 

(2.10) 

where L is the total Lagrangian and the overdot denotes the time derivative. 

primary constraints 
The conjugate momenta form of the chiral superfield components give two even 

e+,=nF+=o 

e+z=nF:Eo 

and four odd primary constraints 

(2.11a) 

(2.11b) 
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The primary constraints originating from the components of the vector superfield have 
the same form as the free one [5]: 

6 v , = n D ~ 0  (2.1 Id 
(6 , ) ,=[n~-i(I  - &)u0&-O (2.1 11) 

(e,) d -  - K ~ “ O  a 

(BV6)‘= n;, + &(X+i&?x + ibxl)’=0. 

(2.1lj) 

( ~ V , ) o = ( ~ x , + ~ a ) Z ) , ~ ~  (2.1 Ik) 

(2.1 11) 

Among these constraints, only 6+2 and QV, commute with all the others, and 
then can give secondary constraints which are simply the equations of motion of the 
fields F+, F? and D, respectively: 

(21 IC) 

(2.1 Id) 

6+, = bF+ =e2‘F: + i2% e”“2 p+ + e  e”‘AL(e2’- iM’) + mQA- E O  

liF! =e“‘F+ -i2112ee”c,y~+ + e  e2‘A+(eXZ+ iM) +m#A!.-O 

I t D =  D+m2C-  &(D+ O C )  + e e”‘A:A+ -e e-”‘ALA- -0. 

The form of 

zC, = - f m C +  &(D + U C ) - c  e”‘A:A+ +E e-2cAtA- (2.12) 
2 2 

give the following secondary constraint for the massive superfield: 

(2.11h) 

The constraints originating from the components of the scalar superfield 0- are 
obtained by replacing the subscripts + by - and the electric charge e by -e. 

Finally, the theory presents sixteen constraints originating from the components of 
the chiral superfields 0+ and CL and ten constraints originating from the components 
of the vector superfield V. 

Using the Poisson brackets of fundamental canonical variables 4, #,, n+ and nql 
with the following definitions for the fermionic variables 

l a  e 0 v2 = -nc, + D + znt C +  - e>‘A:A+ -e c - ~ “ A ~ A -  N 0. 
2 2 

(2.13~) 

(2.13b) 

which are obtained from the left derivative convention used by Wess [5], we observe 
that the constraints are of the second class and the supermatrix 

a2AI.w(~, Y ) =  t ) .  M Y ,  01 = -(-)@aB,,,,, (2.14) 

(with A, B= +, - or U and i, j taking the values a, p when the constraints are fermionic) 
is non-singular. 

The non-vanishing elements of !JAi,s, are: 

a+1.+4(x. Y) =bl+z+3(x,~*)= -e”c(F)83(x-~) (2.15a) 

~ $ ~ , + ~ ( x ,  y )  = i 2 ’ 4  e”c(x)2d(x)63(x-y) (2.15b) 

(2.154 a+4.s.,(x, y)  = -i2% e”c(x’~.(x)b(x-y) 
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(2.15d) 

(2.15e) 

, e2ec(.r) on 3 
Q$5o.t6(x,  (x-r) 

nd,6.+5.(x, y) = -i e 

Qv,,v2(X,Y)=-63(X-Y) !&ja.v,p = EE.s~~(X-Y) (2.1 5f 1 
(2.15g) ~ P , = , ~ ~ ( x , y ) = i  0 3 1  - E )  ~ P ~ ~ , ~ ~ ( x , y ) = i m =  08 

% a x )  -0d 
U= 

Q;!,v,(x, y )  = &EUP (2.15h) 

and + -+ -, e-, -e for the matrix elements generated from the components of the scalar 
superfield 0- . 

These non-vanishing elements show that the supmatrix naj,~,(x, y) is composed 
of three independent superblocks. Two superblocks originate from the chiral superfield 
@+ and @- and the third originates from the superfield V. The latter has the same form 
as that of the free vector superfield [SI. 

{Ab,  0, B(y,  O}* = { 4 x ,  0. W ,  01 
To quantize the theory we must construct the Dirac brackets defined by 

-px, d ~ '  p ( x ,  t), e,;(?, t)pA'.Bj(x', x"){e,(xv, t ) ,  t ) )  (2.16) 

where slA"B' is the inverse matrix of whose non-vanishing elements are 

~ + 1 , + 4 = n + 2 . + 3 = - ~ + 3 . + 2 = - n t 4 . + 1 =  e -2eC(x)63( x-y) ( 2 . 1 7 ~ )  

x cox (2.17b) 

(2. I 7c)  U d  Xa 

(2.17d) 

~ : 5 a , + 6 ,  -i e-2eC(x] Ou (2.17e) 

= -n+2.+1 = 2ie e-2eC") 

~ ~ 1 . ~ 6 = ~ ~ 6 . + 1 = 2 1 / 2 e e - ~ C ~ ~ ]  -0cl 

~ + 5 o , t Z = p 2 , 5 a =  -21/2e e-ZcC(x) 00 - d  
u n  x 

(2.1 7f 1 
S3(x-y) (2.17g) 

~ d + 6 , + 5 n  = _. , e-2ec(x)  -0cI 

QV' .vz= -av*.v, = 

QV>%Vd = - E"a&3(x -),) (2.1 7h) 

qlwI ,np,v,d = -i@ (2.17i) 

3. The Fock superspace 

The spectral representation of two-point superfunctions requires the construction of 
the Fock superspace. This construction needs the canonical quantization of the free 
supersymmetric field theory based on Dirac's brackets (2.16) where the non-vanishing 
supermatrix elements Q"'.'j(x, y )  are given by (2.17) with a null electric charge e. 

The superfield equations of motion of the free fields V(x ,  8, @, @+(x, 0, g) and 
@-(x, 8, g) are given by (2.3), ( 2 . 5 ~ )  and (2.56), respectively, with e=O. 

$Dfi2D V+m2 V-A& (D2d2+  8'0') V= 0 (3.1) 

(3.2) 

(3.3) 



5226 S Balaska et a i  

Acting Dz and D' on equation (3,1), we obtain: 

(U -pZ)D2Y= 0 and (U - p * ) P  Y= 0 (3.4) 

which show that the superfields d V  and 6'V are free and have the same mass pz= 
mz/&. Equation (2.3) shows that they remain free even if the superfield Vis coupled to 
a current J satisfying the conservation equations: 

~ z j = D ~ j = o  (3.5) 

The canonical quantization of the massive vector multiplet was studied in [4] where 
it was shown that the vector superfield V can be written as 

v(X, e, @= iZm ~ , , , ( k ,  0, G)ejkY+ &, VJk, e, e) eAx+h.c. (3.6) 

2 112 

s s 
where ~m(, ,=d?Y(2~)32~,"( l r )  and w,(,,=ko=(kz+mZ(p )) 

V,.(k, 0,O) = -d(k)/m2+i0K6(k)/mz -i@a(k)/mZ- i3p(k)o+i0z&%(k)/2 

and 

-is20a(k)/2+ 028' d(k)/4 (3.7) 

is the physical super-annihilation operator of square mass tn2, containing annihilation 
operators of the different physical components of the superfield V, and 

V,(k, 8, e)=c,(k)+i8e(k)-i8j(k)+i02(m(k)-in(k))/2-is2(pn(k)-in(k))/2 

-tlk&,+ iOZt%t=(k)/2- ie20&f(k) + 0282p2~p/4 (3.8) 

is the spurious super-annihilation operator of square mass p z  containing the annihila- 
tion operators of the different spurious components of the superfield V. 

These superoperators satisfy the following commutation relations 

[vm(k, e, s,, VZP,  e', F)I 
1 

(3.9) -- - exp(0kF- ek8)[4-m2s4(e- e)1(2.)~2o~.s~(k-k') 
4/81 

with kZ = -&, and 

w,(k, e, S,, V:W, o', e?] 
(3.10) 

1 
4mz 

=-- exp(8kB' - ek8)[4 +p2s4(e - e ) 1 ( 2 ~ ) ~ 2 w ~ s ~ ( k  -k') 

with k 2 = - p 2 .  

as 
From (3.6), (3.9) and (3.10), we obtain the commutator of the two vector super6elds 

[ V X ,  e, e,, VW, e ,  @)I 
1 

4 0  

-(4 + Os4( 0 - O'))iA(x - x', p z ) / s )  

=-exp[i(6'3~-6'@')]((4- 08'(6'-0'))iA(x-~',n?) 

(3.11) 
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where 

i ~ ( ~ - ~ t ,  m 2 ( p 2 ) )  = & , J ~ W - = ' -  e - i K - x ' )  1 with k2= -m2(p2)  s -  
and the vacuum expectation value of the time product of two free massive vector 
superfields as 

(OITV(X,  e, e,, v(x', e', @)IO) 
- I e x ~ [  i(O'jT8- eJB')]((4 - 064(  e - P))G,(x-x', m2) 

4 0  

-(4+ 0S4(0-  O'))G,(x-x', p2) /&)  (3.12) 

We folIow the same procedure to quantize the matter superfields @+ and @-. Acting 
where G,(x-x', m'(p2)) is the Feynman scalar propagator of square mass m2(p2).  

D2 on the equations (3.2) we obtain the following equations of motion: 

(o-~;)Q+(~, e, G ) = O  (3.13) 

whose solutions are: 

@*(x, e, G) = d?[A+(k, e, G) e'k.r+~L(k, e, e-""] (3.14) s 
with &=d3k/(2r)'2o and o =ko=(k2+in$)1'2. 

The conditions &,(x, 0,8) =D@:(x, 0, 8)=0 give solutions of the form: 

A*(k, 0, g) = eCBXBA+(k, e) 

B J ~ ,  e, g) =e"'B,(k, 

~ : ( k ,  e, G)=e-"'&k, 8) 
(3.15) 

&k, e, S, =eekeB:(k, e) 
with the following expansions: 

&(k, e)=a,(k)+(2)' /*8d,(k)+O%(k) 

B,(k, ~)=b,(k)+(2)"28E*(k)+82g+(k)  

(3.1 6a) 

(3.16b) 

where (a*(k), b:(k)), (&&), c+.(k)) and (f*(k), g:(k)) are, respectively, the Fourier 
expansion of the superfield components Ai(x), yi(x) and F,(x). 

The equations of motion (3.2) and (3.3) and the canonical quantization of their 
components give the following commutation relations: 

[A& e), &k', s')] = (2~)~2kO6(k-k') exp(20kB') (3 .17~)  

[ ~ + ( k ,  G), P)] = (2n)32k0~(k - K )  exp(-2e'&G) (3.176) 

[A,@, e), &k', e ) ] = - m Q ( 2 n ) 3 ~ 0 ~ ( k - k ' ) ( e -  6)' (3.17~) 

[&(k, 8), A$(k', @)I = -m+(2r)'2koS(k-k')(g- e')' (3. I 7d) 

which lead to the free superfields commutators 

p,(x, e, a), C&Y, P, @)I = i  e 

[@&,e, 8),%(x', e, @)l=-m+(e-e)  I 2 e i ( 8 2 . # - e ' a W ) ~ (  x - x', MQ). 

A(x - x', m;) (3.18~) 

(3.186) 

i (epB+w-@- z e m l  

2 
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In order to construct the Fock superspace of the superstates, we define the vacuum 
state IO> of unital norm, which is  invariant under the supersymmetric transformations: 

P "IO) =o Q.10) = 0 &IO)=O (3.19) 
and annihilated by the action of the annihilation superoperator 

KAk, 0, e) lO>=O 
A , ( k , e , ~ ) ~ o ) = ~ , ( k , e . 8 ) 1 0 ) = 0 .  

V,,(k, 0, B)IO)=O 
(3.20) 

The action of the creation superoperators V L ,  A! and B: on the vacuum state define 
physical multiplet superstates (one-superparticule state), 

Ilp>=V%,0,8)10)  
(3.21) 

IA+)=A:(k,  0, @IO) and IB,)=B:(k, 0, e)lO) 
and V t  gives the spurious multiplet superstate 

II.>= V:W, e, B)IO). (3.22) 

The most general superstate is a mixture of a physical and a spurious multiplet 

I N ) = I N p ) ~ l N ~ ) ~ I N ~ + ) ~ I N ~ ~ ) ~ , I N ~ ~ ) ~ l N ~ - )  (3.23) 

where INj) is a N,-multiplet superstate constructed from the Nj tensorial product of the 
corresponding one-particle multiplet superstates. 

a'A:(k, 0, c) = 4m+B$(k, 0, g) ( 3 . 2 4 ~ )  

B2B,(k, e, 8 ) = 4 r ? ~ , d ~ ( k ,  e, 8) D2d,(k,  8, 8)=4in4B,(k, e,@ (3.24b) 

and the commutation relations (3.17) show that either I NAJ or INS,) are enough to 
construct the completeness relation of the cbiral Fock subspace 

The chiral superfield equations of motion in the momentum space read 

D2Bt,(k, 0, @=4m,A:(k, 0, ii) 

Therefore, the full completeness relation reads 

(3.25) 

(3.26) 

(3.27) 
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where n = p + s  and 8 is the gauge fixing parameter. This completeness relation shows 
the indefinite metric feature of the Fock superspace. 

4. Spectral representation of exact superfield TPGF 

The construction of spectral representations of exact superfield TGPF needs. I n  addition 
to the completeness relation of Fock superspace, the supersymmetric invariance and 
the asymptotic hypothesis. The asynptotic used here is in the same spirit as that in 
conventional field theories. Intuitively, if we look at any system long enough before the 
collision has taken place, then the system will be described by particle superstates 
generated by free superfields V'"(x, 8, e) and 5'"(x, 0, @. The asymptotic hypothesis 
states: 

(4.1a) 

(4 . lb)  

where @? are the free chiral superfields and VF and V: are respectively the physical 
and spurious parts of the free vector superfield Vi" which are irreducible under the 
supersymmetric transformations. The normalization factors Z3 and z 3 Z  are U priori 
different because the dynamic affects differently the physical and the spurious parts of 
the vector superfield. 

If we assume that the one-particle multiplet superstate 11) is stable, the asymptotic 
assumption states: 

(01@*1 l)=(z*)"*(ol@tnl I )  (4 .24 

(01 v~1)=(z,)'/'(olvpnlI)+(2~2)'~(01 VPII). (4.2b) 

4. I .  Vector superjelds 

Let us consider now the vacuum expectation value of the commutator of interacting 
vector superfields : 

A ~ = ( o I [ v ( ~ ,  e, e), V(Y, e, 8)jio). (4.3) 
From the supersymmetric invariance of the theory, we can write 

A,,=(VIL-'(x,e, #)*L(x', e, @ ) I V ) - ( x - x x ' , 8 - @ ' , # + + b )  
=(VI exp{P"[i(x-x'),+eo,B'- eo,e]}. V(0,O'- 8, s'- @)lo) 
- ( x  ++ x g ,  e e', e cI 8) (4.4) 

where IV)=V(O,0,0)10) andL(x, e,e)=exp[-ixP+iOQ+i~Q]. 

identity Jd4q 6(k.-q)= 1, we obtain: 
Inserting the completeness relation (3.27) of the free asymptotic superstates and the 

(4.5) 
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In these equations the fields C, D, M ,  N, A , ,  I ,  x and their derivatives are taken at 
x=o. 

The equations (4.7) show that the functions F(q), p(q), G(q), G'(q) ,  T,(q), A(q),  
A'(q) and 2C - $$r(q) are concentrated at $= -p2. They result from the spurious one- 
multiplet superstates contribution in Aw. Consequently, the sum in their expressions is 
over the spurious one-multiplet only. The completeness relation reduces then to the 
projector 

P.= -2& d7;d4e~iS)(is~ (4.10) 

with k 2 = - p 2 .  Using the expressions of V," and V,"* in terms of components creation 
and annihilation operators, and after an integration over 6' and e, P, becomes: 

s 
P,= - d7; [m%:(k)lO)(O1cp(k) +m~u:(k)lo)(ol U@) 

+ Em2yk)klo)(ole(k) + wtf(k)k10)(01 f(k) 
+ ENl+(k)lO)(OlW(k)+ Etl+(k)10)(01n(k)]. (4.11) 

s 
This relation with the expressions given by the equations (4.9), and the asymptotic 
condition (4.2) show that the densities F, F ,  G, G', A. A' and T", vanish. Let us 
consider, for instance, the density T". Inserting the projector P, we obtain 

T " ( q ) = ( 2 ~ ) ~  d"kd4B S(q-k)(CI ls)(l&4") (4.12) s 
with 

(Cl l,)=-(Z3)'"(D'"/mzI I,>+ (Z~Z)"((D+ OC)'"/p211J 

(1,IA") = (Z3)''2(ls[(Ai""- ( l/p2)8" 8.4'")) + (Z,Z)"~( ls18" aAi"/p2) 

From the Fourier expansion of Din, C'" and A'"" [4], and the commutation relations 
of the different operator components we show easily that T' vanishes. Similarly, we 
can deduce the vanishing of: G, G', A, A', Fand F'. Now, from the Lorentz invariance 
and the equations (4.7), we can see that r(q) and Z(q) are scalar functions of q2 and 
satisfy the relation 

($+p2)12z($)- fq2r(q2))=o (4.14) 

which means that 2C(q2)-fq2r(q2) differ at most by a multiplicative term from 
S ( $ + p 2 ) .  For convenience we take 

(4.13) 

2c-  f $ r = - ( ~ , ~ / ~ ) s ( $ + p ~ )  (4.15) 

and we introduce the spectral density 

o(q2) = -zc(q2) - 4q2r(q2) (4.16) 
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and hence we obtain 

r= -u/q2+ (z,z/$&)s(q2+p2) 

c = - i( 6 4- ( Z 3 Z / E ) 6 ( $  +p2)). 

Then, Aw may be written: 

(4.17) 

(4.18) 

+(e -  ,gr)4-qd)][eid'x-x7- e -k(x-* I (4.19) 

and by introducing the spectral density 6, we can write 

i 
4 0  

Aw= --exp[-ifW@+ i0't%] [O(e - 0')'-4][ lom dM2 u(M2)A(M2, x - x ' ) ]  

+ ( Z ~ Z / & ) [  U( 0 - 0')' + 4]A(p2, x - x') . 

To obtain this expression, we have used the identities 

(4.20) I 
JdM'6(8+$)= I l $ = j d 4 q  &?+flZ)@(qo) (4.21) 

with @(qo)=l  if qo>O, and null if qo<O. 
The exact TGPF thus exhibits a physical part which is a superposition of free commut- 

ators with a weight U, and a non-physical part concentrated at the mass p z  and propor- 
tional to the spurious free commutator. 

The stability of the one-multiplet superstates (4.2) allows us to evaluate the contribu- 
tion to Aw of the one-multiplet superstate. 

The contribution of the physical one-multiplet superstates is 
n 

x (01 vI:(k,, el, el)v;(x: e', @)IO)- [(x, e, e, ++ (Y, e', q]. (4.23) 

Using the Fourier expansion (3.6) for p: and the commutation relations (3.9) we arrive 
at the result: 

iZ, 
4 0  

-_ exp[i(0'@- ea@)]. [ -4 + U( 0 - 0')']A(m2, x - x'). (4.24) 
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The contribution of the spurious one-multiplet superstates is evaluated in the same 
way to give : 

(4.25) iZp 
4E0 

-- exp[i(0'@- Si@')]* [4 + O( 0 - S')4]A(p:x-x'). 

The term (4.24) is the contribution to Aw concentrated at m': 

o(m2) =Z38(M2-m". (4.26) 

On the other hand, we conclude that the Zpterm in Aw results from the contribution 
of the spurious one-multiplet superstates. 

If we denote by m, the threshold of the more than one-multiplet superstates, we 
can separate the discrete one-multiplet contribution from the continuum: 

1 Aw = -- exp( -i@i%'+ie'@) [U( 0 - O')4-4]Z3.A(n?, x- x') 
4 0  

+ [U(@ - 8.)4+4]A(p2, x - x') . (4.27) 

The exact propagator (01 TV(x, 8,  e), V(x', e', g)IO) can be obtained from (4.27) 
by simply replacing A(x-2, M') by the Feynman scalar propagator G ~ ( x - x ' ,  M') of 
square mass M'. 

Following the same strategy as in conventional electromagnetic field theory [2], we 
can obtain, from the superequation of motion (2.3) and the superfield TPGF (4.27), the 
vacuum expectation value of the commutator of supercurrents: 

& I 

(OIMX, e, e ) , w  e, e m  
I 

=-exp[i(&t@-e%!?)][4- m4(e-  e')] 
4 0  

dM' o(M2)(m2-MZ)A(x-x', M') Jm; (4.28) 

which exhibits the disappearance ofone superstatecontribution, (OlJ I ) = O  andcurrent 
conservation. The form of the vector superfield TPGF (4.27) shows also 

(OI[J(X, e, e,, D*v(x', e, ~)IIO)=(OI[J(X,  e, 8), D"v(x', e, 8)11o)=o 

which can readily be extended to 

(4.29) 

[ J ( ~ ,  e, g), D2v(x: e', @)I = [J(x, e, Gj, D"v(Y, e, e')] =o (4.30) 

which reminds us that D'Vand 6" Vare free vector superfields (spurious vector super- 
fields), and (OlJ(x, 0, @)IN)=O when IN) includes spurious superstates. This shows 
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that the contribution of the completeness relation in (4.28) does not include intermediate 
spurious states which involve minus signs, showing that all terms in 

(OIJ(X, 0, B)IN)(NIJ(x', e ,  @)lo) 
N 

I contribute with a positive sign; then u(M2) is positive. 
In order to get the sum rules of the weight function a(M2), let us detail the canonical 

commutation relations of the interacting vector superfield components. Generally, the 
interacting Lagrangian depends on the vector superfield V(x,  e,&) whose components 
include derivations. Then, in terms of components, we are in the presence of a derivative 
interacting Lagrangian which can change the form of the conjugate momenta as well 
as the superconstraint matrix. In this case the canonical commutation relations differ 
from the free case. However, if the interaction source is external (the supercurrent J 
does not depend on V )  or, in the case of SQED, where, in spite of the derivative feature 
of the interacting Lagrangian, the superconstraint matrix and Dirac's brackets of the 
interacting vector superfield components keep the same form as if they were free. 

From (4.27), we can deduce the exact TPGF of different vector superfield compo- 
nents. For the vector field A", we find 

(Olt&(x), A&')llo>=;;, a d p A ( x - ~ ' ,  p 2 )  
iZ3 

+i(g,p+&8p/O) 1: dM2 u(M~)A(x-x', MZ) (4.31) 

which is exactly the same as the expression obtained from conventional field theory 

For these fields, the interacting Lagrangian (2.7) is not derivative, then we get the 

~ o m d M z u ( M 2 ) = l  (4.32) 

[31. 

same sum rules 

M2 
(4.33) 

modulo a modification of the normalization of the canonical commutation relations 

[A , (x ,  1).  n"(x', l ) ] = i ~ ' ( x - x ' ) ( g " , - a g ~ ~ ' )  (4 .34~)  
[31: 

where 

(m2-M2) 
M Z  . 

(4.35) 

In spite of the derivative interacting Lagrangian (2.7) of the other vector superfield 
components, Dirac's brackets (2.16) and the equation (4.27) give, for instance, 

(OI{%&, o,a&', f))lo>=o 

(4.36) 
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which give exactly the sum rule (4.33). The sum rules (4.32) and (4.33) remain 
unchanged for the components of (4.27) if we consider the following canonical commu- 
tation relations: 

[ ~ ( x ,  I ) ,  z,,,(x', t j i = [ ~ * ( x ,  0, n~. (x ' ,  t)]=is'(x-x')(~ +a)  (4.34b) 
[cl(x,  I), ~ ( x ' ,  z)]=is3(x-x') [c,(x, t ) ,  nc,(x', t ) ]=i8 ' (x-~)( l  +a)  (4 .34~)  
{n"(x, I), naB(x', t ) )  =is;(e-1)s3(x-x') (4.34d) 

{ald(,, t ) ,  ni,(x', B t ) )  = -i&'(x-x,)(~ +a) (4.34e) 

(4.34f) 

- .  

{id(x: t ) ,  f ,p (x ' ,  1)) =isrp6'(x-x'). 
Note this change in the canonical commutation relations afects only the spurious part 
of the vector superfield components. 

Concerning the Dirac field 

the TPGF yields one spectral function: 

@I{ W D ( x ) g  VD(x')}lo> 

(4.37) 

while conventional theory gives two spectral functions. 

4.2. Chiral superfield 
To construct the spectral representation of the extact TPGF of the interacting chiral 
superfield, we follow the same strategy as in the vector superfield case. We can express 
the vacuum expectation value of the commutator of two chiral superfields as 

Ao,o:=<oI[@*(x, 8, Q, @L(J', 8', C)llO> 
- -(@*I eip[(.r-x')t6uP-80~ @*(O, t 8'- 8, e'- g)IO) 

-(@ti -~P[ (~-X' )+B~LTB--BUPIQ)  (0 p-8 p-g)lo) + e  * .  

d4qC6'(q-kN)(cDiIN)(NI@:(0, 8'- 8, @-@IO) 

elr(x-r') + 84@ - 8'Rfe 

=f N 

d'q 6 ' ( (q -kN) (~: IN) (NI(DI(0 .  0'- 8, s'- @IO) -1 N 

e-xq[x-f)+6'd#--Bd@ 

(4.38) 
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where (@*I = (Ol@*(O, 0,O) and <dI = (O[@l(O, 0, O), and 

pa+,(q, @-e,  p-e)=(2n)"s4(q-kN)(a)ai~)(~ia:(~,  v - e ,  @-e,> 
pia2(q, e'-e, C - I T ) = ( ~ ~ ) ~ C  s4(q-kN)(~:iN)(Ni(Dr(0, @-e,  8-8 ) )  

N 

N 

are the superdensities 

of superdensities as 
The chiral conditions = O  and DQI =0, and Lorentz invariance give solutions 

which gives the spectral representation of the interacting chiral superfield TPGF as a 
superposition of free commutator contribution with a weight pa, 

, = i  ei(8J#tGZ@-20N1 Iom dM2p, , (M2)A(x-x' ,  M'). (4.39) 

The same procedure gives the vacuum expectation value of the commutator 
[@+, @-I as 

Am+m.=(OI[@+(x, 0, @, Wx', e', @)]IO> 

where 

(4.40) 

p+-l=(2s)3c s 4 ( 4 - k N ) ( @ t i ~ ) ( ~ ~ ~ - ( ~ ,  e-e ,  @-e)) 
pt-2=(2n)3x s4(4-kN)(~- iN) (NI~+(o,  0 - 8 .  e'- e)). 

N 

N 

The condition Dat = O  and DO- = O  gives solutions of the form 

P t d d  p + -  I = (0 - 012 e(O'- 6)dIB- J) 

-(gr=e)2elB'-BW-B)p ( ) 
pi-2- 4- 4 

and the Lorentz invariance leads to 

' i(eEB-sz'l dM2 p + - ( M 2 ) A ( x - x ' ,  M2). (4.41) Am,m-=i (B-Q)  e 

The contribution of the one-multiplet superstate and the asymptotic condition (4.2~) 

JOW 

give the following interacting chiral TPGF: 

Am*m, , =iZa eiteb-e+w+W-zeiW)A( x - x', in;) 

+ i  ei(eflB+e,?W-2e~-B') 14 dM2 pai(M2)A(x-x', M 2 )  (4.42) 

't 
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Ao+m-=im4(Z+Z-)"2(& 0')' eiren8-aFB)A(x-x', m;) 

+i(B-0')2e1(em~~~n@lp) dMZp+-(M2)A(x-x', M2) (4.43) s: "+ 
where m;*>in?+ is the multiparticle threshold. 

position of the corresponding free TPGF. 
As for the vector superfield the chiral superfield TPGF can be written as a super- 

In terms of chiral superfield components equation (4.42) gives 

(01 I W l a ( X ,  0, Q*&'. 010) 
m 

=u~~Z*G'(x-x ' ) iu~~G3(~-x ' )  s dM2p,,(M2). (4.44) 
'"I+ 

In section 2, it is shown that the derivative feature of the interacting Lagrangian 
does not change the constraint matrix relating to the vector superfield components, but 
changes that of the chiral superfield components. Then the quantum version of Dirac's 
bracket { v'+.(x, I ) ,  qtr(x' , t )}*  is different from that of the free fields. Therefore, we 
cannot obtain for the chiral superfield the same sum rule (4.32) and (4.33). 

5. Conclusion 

The construction of the Fock superspace based on a covariant canonical quantization 
of the vector superfield allows us to apply a supersymmetric version of the Kallen- 
Lehman procedure. In the frame of this procedure we obtained a spectral representation 
of'rpcF of interacting chiral and vector superfields as a superposition of the correspond- 
ing free TPCF with one real and positive spectral weight for the vector superfields. The 
canonical quantization based on Dirac's brackets shows that, in spite of the derivative 
feature of the interacting Lagrangian of SQED, we obtain the same sum rules as in nou- 
derivative conventional field theories. Let us recall that in conventional vector field 
theories, the sum rules (4.32) and (4.33) can hold only if we modify the normalization 
of the canonical commutation relation of the spurious part of the vector field 131. I n  
vector superfield theories, the same sum rules can hold if the supersymmetric partners 
of the spurious part of the vector field satisfy modified normalization of the canonical 
commutation relations. 
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